New article: Rubielos de la Cérida impact shock metamorphism

Shock metamorphism in the Rubielos de la Cérida impact basin (Eocene-Oligocene Azuara multiple impact event, Spain) – reappraisal and photomicrograph image gallery

by Kord Ernstson1 and Ferran Claudin2 (April 2021)

Abstract. – We present a new compilation of previously abundantly studied and published shock effects in minerals and rocks of the Middle Tertiary Rubielos de la Cérida Impact Basin in northeastern Spain. Typologically, we organize by: shock melt – accretionary lapilli – diaplectic glass – planar deformation features (PDF) – deformation lamellae in quartz – isotropic twins in feldspar – kink banding in mica and quartz – micro-twinning in calcite – shock spallation. Included are the newly associated Jiloca-Singra impact in the so-called Jiloca graben and the Torrecilla ring structure, which immediately adjoins the Rubielos de la Cérida basin to the northeast. The compilation and presentation also opposes once more the still existing fundamental rejection of an impact genesis of the Azuara impact event by leading impact researchers of the so-called impact community and by regional geologists from the University of Zaragoza. 

Continue reading “New article: Rubielos de la Cérida impact shock metamorphism”

LPSC 2021 Poster Download

LPSC 2021

The East Bavarian Meteorite Crater Assemblage Revitalized — Probably Linked to the Ries Crater (Germany) Impact Event – Kord Ernstson

Ries Impact Structure (Germany) Long- Distance Cratering Effects: The Mandlberg Phenomenon Seen in Ground Penetrating Radar (GPR). – Jens Poßekel & Kord Ernstson

Lechatelierite in Moldavite Tektites: New Analyses of Composition. – Martin Molnár, Stanislav Šlang, Karel Ventura. Kord Ernstson.

The Enigmatic Holmajärvi (Northern Sweden) Diamictite: Evidence of a Meteorite Impact Deposit. – Peder Minde and Kord Ernstson

Zhamanshinite-Like Black-Glass Melt Rocks from the Saarland (Germany) Meteorite Impact Site. – Kord Ernstson – Dominic Portz – Werner Müller – Michael Hiltl

The Steinheim Basin, the Ries crater “double disaster” and the mistaken Steinheim crater diameter

New article – (and LPSC 2022 contributions)

The Steinheim Basin, the Ries crater “double disaster” and the mistaken Steinheim crater diameter

by Kord Ernstson1 & Ferran Claudin2 (Febr. 2021)

Abstract. – The article, which we comment here, interprets sedimentological findings (seismite horizons) at a distance of 80 – 180 km from the two impact structures, the Ries crater and the Steinheim basin, to the effect that, contrary to the impacts at a distance of only 40 km from each other, which have always been assumed to be synchronous, the Steinheim basin is supposed to be several 10 000 years younger than the Ries impact. This is against all probability, but because of the purely statistical impact events, it cannot be completely ruled out. This article therefore does not criticize the statement itself, but refers to equally probable alternatives that have not been considered, as well as to a lack of literature citations. The article loses its fundamental significance to the point of the simple alternative: it may be, but it also may not be, a finding without recognizable importance. A major point of criticism of the article is the common practice in the impact literature of suppressing the diameter of the Steinheim impact structure, which at around 7-8 km is actually twice as large, as it was proven almost 40 years ago by detailed morphological analyses and gravimetric measurements and published in a renowned journal. Since the size of the Steinheim Basin is included in the estimates for the formation of the seismites, it must be stated that the authors started from partly false premises. Here, the findings on the much larger Steinheim impact structure, which cannot be explained away, are presented again, combined with the wish to deal with scientific findings more honestly.

__________________________________________

1 University of Würzburg, 97074 Würzburg (Germany); kernstson@ernstson.de; 2 Associate Geological Museum Barcelona (Spain); fclaudin@xtec.cat

A PDF of the complete article may be downloaded here.

Continue reading “The Steinheim Basin, the Ries crater “double disaster” and the mistaken Steinheim crater diameter”

Shock metamorphism in calcite

Shocked calcite

shocked calcite multiple sets of planar deformation features Rubielos de la Cérida impact

Shock effect in calcite. Multiple sets of closely spaced planar features (micro twins). The width of the twins is of the order of only one micrometer. Thin section micrograph, crossed polarizers. From a polymictic breccia, rim region of the Rubielos de la Cérida impact basin crater chain.

Meteorite impact fluidization

Rock fluidization, Azuara Impact Structure (Spain)

impact rock fluidization in competent limestone Azuara impact Spain

Rock fluidization in strongly competent limestones/dolostones (Muschelkalk Fm.); Monforte de Moyuela, Azuara impact structure, Spain. See article Rock fluidization during peak-ring formation of large impact structures by U. Riller et al. Also focus on Acoustic fluidization (H.J. Melosh). Enlarged image.

Meteorite impact spallation

Impact spallation – completely underestimated by impact researchers.

shock spallation experiment microscopic megascopic Spanish impact structures

Left, from the top down: Shock spallation experiment producing typical open tensile fractures. – Spallation fractures in shocked quartzite cobble, Azuara/Rubielos de la Cérida impact event (Spain). Microscopic shock spallation in sandstone quartz grains, Rubielos de la Cérida impact basin. – To the right: Local megascopic impact spallation in well-bedded Jurassic limestones; Azuara (Spain) impact structure northern rim region south of Fuendetodos. Link to a full article on impact spallation.