Wikipedia: Chiemite impactite and the EGU poster deception with the Wikipedia name

SEM images chiemite and chiemite pseudomorphic after woodChiemite, which is described in international, renowned peer-reviewed publication organs as high pressure/high temperature impactite with the contents of diamond and carbines (T = 2500 – 4000 K, P = several GPa), is of terrestrial origin and has originated from a spontaneous shock coalification/carbonization of the vegetation (wood, peat) of the Chiemgau impact area. The published methods of the chiemite investigation were: optical and atomic force microscopy, X‐ray fluorescence spectroscopy, scanning and transmission electron microscopy, high‐resolution Raman spectroscopy, X‐ray diffraction and differential thermal analysis, as well as by δ13C and 14C radiocarbon isotopic data analysis.

The most comprehensive article on the chiemite impactite so far is published here:

Enigmatic Glass-like Carbon from the Alpine Foreland, Southeast Germany: A Natural Carbonization Process. – Acta Geologica Sinica (English Edition), 92, 2179-2200, 2018.

Tatyana G. SHUMILOVA, Sergey I. ISAENKO, Vasily V. ULYASHEV, Boris A. MAKEEV, Michael A. RAPPENGLÜCK, Aleksey A. VELIGZHANIN, Kord ERNSTSON

About the first author (from the Journal Editor). – Tatyana Shumilova, born in Vorkuta, Russian Federation, in December 1967. She received her PhD at the Institute of Geology UB Komi SC UB RAS in 1995. She was habilitated at the Saint-Petersburg Mining University (Leningrad Mining Institute) in 2003. At present she is a head of the Laboratory of Diamond Mineralogy and main scientist at the Institute of Geology UB Komi SC UB RAS and Affiliated Researcher at the University of Hawaii. She published over 50 papers in peer-reviewed journals such as Scientific Reports, Carbon, European Journal of Mineralogy, Mineralogy and Petrology, Doklady Earth Sciences, and others.

The background for these additions to the article is the following contrast:

At the this year’s (2019) meeting of the European Geosciences Union (EGU) in Vienna in April, Dr. Robert Huber (marine geologist at Marum, Center for Marine Environmental Sciences, University of Bremen) and Dr. Robert Darga (ice age geologist, director of the Mammut Museum in Siegsdorf, Chiemgau, Oberbayern) obviously succeeded in persuading some other scientists to present a joint poster, on which their crude ideas were presented: “If You Wish Upon A Star. Chiemite: An Anthropocene Pseudo-Impactite. “

Placing the poster in Wikipedia and Wikimedia Commons does not enhance the value of this poor attempt.

The three coauthors of the poster are from Australia – Mineral Resources, CSIRO, Federal Agency for the improvement of the economic and social performance of industry -, shedding some light on their relevant scientific competence. Scientifically the poster presentation of these impact critics, in which not a single reference is brought to the Chiemgau impact and not a single reference to the chiemite is absolutely worthless, far from any scientific seriousness, and should cause mockery at most in a respectable science scene. One wonders why the poster could be shown at all on the Vienna conference.

In the meantime, the chiemite impactite has been found widely in the Saarland impact region as well as in numerous specimens in the impact area of the Czech Republic Abstract Poster. In both cases the chiemites show identical formation and occur in both areas together with strongly shocked impact rocks.

chiemite impactite from the Saarland and Czech Republic impacts

Chiemite from the Saarland impact ………………………..and the Czech impact

Moissanite (silicon carbide, SiC) and titanium carbide (TiC) crystals in a xifengite – gupeiite – Fe2Si (hapkeite ?) iron silicide matrix, Chiemgau impact

Here we remind of an interesting abstract article presented at the 2011 Lunar and Planetary Science Conference (LPSC):

SEM and TEM analyses of minerals xifengite, gupeiite, Fe2Si (hapkeite?), titanium carbide (TiC) and cubic moissanite (SiC) from the subsoil in the Alpine Foreland: Are they cosmochemical? 

Authors: M. Hiltl 1, F. Bauer 2, K. Ernstson 3, W. Mayer 4, A. Neumair 4, and M.A.  Rappenglück 4 – 1 Carl Zeiss Nano Technology Systems GmbH, Oberkochen, Germany (mhiltl@online.de), 2 Oxford Instruments GmbH NanoScience, Wiesbaden, Germany (frank.bauer@oxinst.com), 3 University of Würzburg,Germany (kernstson@ernstson.de), 4 Institute for Interdisciplinary Studies, Gilching, Germany (info@mayer-chiemgau.de, agneumair@arcor.de, mr@infis.org).

The abstract may be downloaded HERE.

In addition to the images shown in the abstract paper we display here a photograph of one of the most highlighting iron silicide particles so far found in the area of the Chiemgau impact meteorite crater strewn field:

Fig. 1. Iron silicide particle (maximum size 18 mm) with cubic moissanite crystals (details see Fig. 2) sticking out from the matrix that is mostly composed of xifengite, Fe5Si3, and gupeiite, Fe3Si. An iron silicide, stoichiometrically Fe2Si, has also been analyzed, which may represent the rare mineral hapkeite. Hapkeite has so far been found on Earth only in the Dhofar 280 meteorite assumed to originate from the Moon.

Fig. 2. SEM image of moissanite crystals from the iron silicide specimen shown in Fig. 1. Source Carl Zeiss Nano Technology Systems GmbH.

An EBSD image of moissanite crystals together with titanium carbide TiC crystals in iron silicide matrix is shown in Fig. 3:

silicon carbide and titanium carbide crystals in matrix of xifengite and gupeiite

Fig. 3. Titanium carbide (TiC, dark gray), and silicon carbide (moissanite, SiC, black) crystals in a matrix of intergrowth of various iron silicides. Iron silicide particle from the Chiemgau impact meteorite crater strewn field. EBSD image; the field is c. 500 µm wide.

It is interesting to note that the silicon carbide moissanite (SiC) has been reported to occur together with the lonsdaleite diamond variety in impact melt rock from the Ries impact crater (Nördlinger Ries):

R. M. HOUGH, I. GILMOUR, C. T. PILLINGER, J. W. ARDEN, K. W. R. GILKESS, J. YUAN & H. J. MILLEDGE (1995): Diamond and silicon carbide in impact melt rock from the Ries impact crater. – Nature, 378, 41-44.

The authors suggest that the minerals formed by chemical vapour deposition from the ejecta plume in the impact event and hence may be used as a reliable diagnostic tool for hypervelocity impact on Earth.

In the case of the Chiemgau impact, the extreme purity of the moissanite and TiC crystals and their association with the xifengite and gupeiite iron silicides are rather speaking in favor of a primary cosmic origin however.