Impact sulfate melt rock

Impact sulfate melt rock from the Rubielos de la Cérida  impact basin (Azuara impact event, Spain) – a rare meteorite impact signature

impact sulfate melt rock Rubielos de la Cérida Spain
Strongly shocked quartzite clasts in the low-density, highly porous CaSO4 matrix.
impact sulfate melt rock Rubielos de la Cérida impact basin Spain
impact sulfate melt rock SEM Rubielos de la Cérida impact basin Spain
Clast of sulfate melt rock in the Barrachina megabreccia -The sulfate melt rock under the SEM. Note the vesicular texture. – More about Azuara and Rubielos de la Cérida impact melt rocks (carbonate melt, carbonate-phosphate melt, silicate melt, carbonate-psilomelan melt).

Impact polymictic breccia dike

Polymictic impact breccia dike sharply cutting through well-bedded Muschelkalk limestone. – Rubielos de la Cérida impact basin (Spain) near Olalla.

polymictic breccia dike Rubielos de la Cérida impact structure
Very nice example of the many breccia dikes in the Spanish Azuara impact structure and the Rubielos de la Cérida impact basin (crater chain). – More about impressive breccia dikes (dike breccias) in the Rubielos de la Cérida basin and the Azuara structure.

Ground Penetrating Radar (GPR) – Chiemgau impact – Emmerting crater

Ground Penetrating Radar (GPR): Emmerting #004 crater, Chiemgau meteorite impact strewn field (Bavaria, Southeast Germany)

Ground Penetrating Radar (GPR) – meteorite crater Chiemgau impact

Diametral radargram across one of the most spectacular craters in the Chiemgau meteorite impact strewn field. Loamy-gravelly target material. Impact melt rocks, strong shock metamorphism. Strong reflectivities down to several meters depth are explained by extreme high-temperature sintering of the underground material. Note the complex excavation with the ring wall wandering outwards (as indicated with “real reflections”). 25 MHz center frequency with modulated 200 MHz.

More about GPR measurements over young meteorite craters: Click HERE

Chiemite – carbon impactite

Chiemite – carbon impact rock (impactite) – the Chiemgau impact event as namesake

chiemite impact rock impactite Chiemgau impact even

REM image. – Formation in spontaneous shock carbonization of the vegetation in the impact area. Investigations at the Diamond Laboratory, Geological Institute, Russian Academy of Science Syktyvkar, with optical and atomic force microscopy (AFM), X-ray fluorescence spectroscopy (RFA), scanning electron (SEM) and transmission electron (TEM) microscopy, high-resolution Raman spectroscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA) as well as δ13C and 14C radiocarbon isotope data analysis.

Approx. 95% carbon; detection of diamond and carbyne; formation conditions for the latter 2500 – 4000°C and some GPa pressure.

Very “smart” people are still of the opinion that it is coke. Take a look at that too: file: EGU 2019 chiemite poster.pdf – Wikipedia

SEM detail view of the chiemite.
An extensive article on the chiemite has recently been published in print:
Enigmatic Glass‐Like Carbon from the Alpine Foreland, Southeast Germany: A Natural Carbonization Process.

Picture of the month – ballen structures

Impact shock feature: ballen structures from four new impact sites in Central Europe (Germany, Czech Republic)

Ballen structures in silica form a characteristic texture in quartz that in general is considered a result from various stages of phase transformation and recrystallization of amorphous silica like e.g., diaplectic glass and hence are regarded as shock indicator. A different model has recently been suggested that proposes a formation of ballen in quartz in an extreme thermal shock event.

Ballen structures (photomicrographs, plane light and crossed polarizers; field width 560 µm). – Saarland (Nalbach, Saarlouis) impact.

Ballen structures impact merging into tridymite and cristobalite.(photomicrographs, crossed polarizers and plane light; field width 1.4 mm). – Saarland (Nalbach, Saarlouis) impact.

Click the Web site!
Click an LPSC poster!

Ballen structures (plane light and crossed polarizers), Chiemgau impact meteorite crater strewn field; Stöttham archeological excavation, catastrophe layer.       Click the LPSC poster!

Ballen structures; Chrudim – Pardubice impact site (Czech Republic); asphaltic polymict impact breccia.

Click LPSC poster!

Ballen structures (photomicrograph, plane light); granitic impact melt rock sheet, Bach/Regensburg (Germany) impact site.

“Earth’s Impact Events Through Geologic Times”: Comment on Schmieder & Kring article in Astrobiology

Comment on: ” Schmieder, M. and Kring, D. A. (2020) Earth’s Impact Events Through Geologic Time: A List of Recommended Ages for Terrestrial Impact Structures and Deposits. – Astrobiology, 20, 91-141.”

by Kord Ernstson1 & Ferran Claudin2 (Jan. 2021)

Abstract: We use Schmieder and Kring’s article to show how science still works within the so-called “impact community” and how scientific data are manipulated and “rubber-stamped” by reviewers (here, e.g., C. Koeberl and G. Osinski). We accuse the authors of continuing to list the Azuara and Rubielos de la Cérida impact structures and one of the world’s most prominent ejecta occurrences of the Pelarda Fm. in Spain as non-existent in the compilation. The same applies to the spectacular Chiemgau impact in Germany, which has been proven by all impact criteria for several years. For the authors’ dating list, we propose that the multiple impact of Azuara is included together with the crater chain of the Rubielos de la Cérida impact basin as a dated candidate for the third, so far undated impact markers in the Massignano outcrop in Italy.

____________________________________

1 University of Würzburg, 97074 Würzburg (Germany); kernstson@ernstson.de. 2 Associate Geological Museum Barcelona (Spain); fclaudin@xtec.cat

A PDF of the complete article may be downloaded here.

Continue reading ““Earth’s Impact Events Through Geologic Times”: Comment on Schmieder & Kring article in Astrobiology”