“The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why”
by Kord Ernstson & Ferran Claudin (Dec. 2013)
Abstract. – We use and variegate the title of this article published in Earth-Science Reviews to show how science may (mal)function, how scientific results are manipulated, and how a few exposed impact researchers (the authors of the Earth-Science Reviews article included) are counteracting exactly the ideas presented in that article.
1 Introduction
“The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why” is the title of a comprehensive and in principle not too bad article written by Bevan M. French and Christian Koeberl and published in Earth-Science Reviews (French & Koeberl 2010). We however would like to take up this title to once more point to the large Azuara and Rubielos de la Cérida impact structures in Spain and the related controversy shedding light on how science is manipulated, in this case with regard to some impact researchers from the so-called “impact community” (whatever that may be).
2 What doesn’t work
With a slight modification we begin with “what doesn’t work”. As for the identification of meteorite impact structures it obviously doesn’t work to publish clear and generally accepted impact shock features (like they are addressed in that article) to get an impact structure being established. This holds true for both the Azuara and Rubielos de la Cérida impact sites that are still opposed vehemently by a few leading impact researchers. Apart from the manifold geologic and geophysical evidence like ubiquitous monomictic and polymictic breccias, large systems of monomictic and polymictic breccia dikes, enormous and extended megabreccias, shatter cones, extended impact ejecta, gravity and geomagnetic anomalies, the unambiguously established shock metamorphism like shock melt, planar deformation features (PDFs) and diaplectic glass in various minerals appears not to convince (title!) Christian Koeberl, Falko Langenhorst, John Spray and others. Therefore, we once more present a collection of impact shock features from the Azuara and Rubielos de la Cérida impact structures in Spain that have all been published earlier in various journals:
Azuara impact structure: Planar deformation features (PDFs)
Fig. 1 A-D: PDFs in quartz from the Azuara impact structure. A, B: in quartzite rocks from the impact ejecta deposit (Pelarda Fm.). C: from a polymictic strongly shocked breccia. D: Frequency diagram of Azuara PDFs based on data elaborated by Dr. A. Therriault. All figures have been published earlier.
An independent investigation of PDFs in samples from the Azuara impact structure (a polymictic dike breccia and Pelarda Fm. ejecta) was made at the Geological Survey of Canada by Dr. Ann Therriault (Therriault 2000). She analyzed the crystallographical orientation of PDFs in quartz (Fig. 1 D) and other parameters such as density, sharpness, spacing, and spreading over the grain (Fig. 1 C). And we cite from her report: Up to five sets of PDFs per grain were observed. The spacing is 1 µm or less, the PDF density high. Practically all sets are decorated. All shocked grains have reduced birefringence of 0.004 – 0.008. Continue reading “Reminder: Manipulation in science”